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ABSTRACT
To meet growing terabit link rates, highly parallel and scal-
able architectures are needed for IP lookup engines in next
generation routers. This paper proposes an SRAM-based
multi-pipeline architecture for multi-terabit rate IP lookup.
The architecture consists of multiple bidirectional linear pi-
pelines, where each pipeline stores part of a routing table.
We address the challenges of realizing such a solution. Two
mapping schemes with different granularity are proposed to
balance the memory distribution over different pipelines as
well as across different stages in each pipeline. Also, IP
caching is adopted to facilitate processing multiple packets
per clock cycle. Instead of using large reorder buffers and
complex logic, a lightweight scheduler and several small out-
put delay queues are developed to preserve the intra-flow
packet order. Simulation experiments using real-life data
show that the proposed 4-pipeline architecture can store a
core routing table with over 200K unique routing prefixes in
less than 2 MB of memory, and can achieve a high through-
put of up to 18.75 billion packets per second (GPPS), i.e. 6
Tbps for minimum size (40 bytes) packets.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
C.2.6 [Computer Communication Networks]: Internet-
working—Routers

General Terms
Algorithms, Design, Performance

Keywords
IP lookup, Pipeline, Terabit, Bidirectional, SRAM

1. INTRODUCTION
The advent of terabit networks [21] poses a major chal-

lenge on the design of next generation IP routers. Some
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leading industrial vendors are already making efforts to offer
multi-terabit core routers [8]. High link rates demand that
IP lookup in routers must be performed in hardware. For in-
stance, OC-3072 (160 Gbps) links require a throughput of 1
packet per 2 ns, i.e. 500 million packets per second (MPPS),
for a minimum size (40 bytes) packet. Such throughput is
impossible using existing software-based solutions [18].

Most hardware-based high-speed IP lookup engines fall
into two main categories: TCAM (Ternary Content Ad-
dressable Memory)-based and DRAM/ SRAM (dynamic/
static random access memory)-based solutions. Although
TCAM-based engines can retrieve IP lookup results in just
one clock cycle, their throughput is limited by the relatively
low clock rate of TCAMs. TCAMs are expensive and of-
fer little flexibility to adapt to new addressing and rout-
ing protocols [7]. As shown in Table 1, SRAMs outperform
TCAMs with respect to speed, density and power consump-
tion. However, traditional SRAM-based solutions, most of
which can be regarded as some form of tree traversal, need
multiple clock cycles to complete a lookup. For example,
trie [18], a tree-like data structure representing a collection
of prefixes, is widely used in DRAM/SRAM-based solutions.
Multiple memory accesses are needed to search a trie to find
the longest matched prefix for an IP address.

A number of researchers have explored pipelining to im-
prove significantly the throughput. A simple pipelining ap-
proach is to map each trie level onto a pipeline stage with
its own memory and processing logic. One IP lookup can
be performed every clock cycle. However, this approach re-
sults in unbalanced trie node distribution over the pipeline
stages. This has been identified as a dominant issue for
pipelined architectures [3, 2]. In an unbalanced pipeline,
the “fattest” stage, which stores the largest number of trie
nodes, becomes a bottleneck. It adversely affects the overall
performance of the pipeline in the following aspects. First,
more time is needed to access the larger local memory. This
leads to a reduction in the global clock rate. Second, a fat
stage results in many updates, due to the proportional re-
lationship between the number of updates and the number
of trie nodes stored in that stage. Particularly during the
update process caused by intensive route insertion, the fat-
test stage may also result in memory overflow. Furthermore,
since it is unclear at hardware design time which stage will
be the fattest, we need to allocate memory with the maxi-
mum size for each stage. Such an over-provisioning results
in memory wastage [2]. To balance the memory distribution
across stages, several novel pipeline architectures have been
proposed [2, 11, 6]. However, none of them can achieve a



Table 1: Comparison of TCAM and SRAM technologies
TCAM (18 Mbits chip) SRAM (18 Mbits chip)

Maximum clock rate (MHz) 266 [16] 400 [5, 19]
Cell size (# of transistors per bit) 16 6

Power consumption (Watts) 12 ∼ 15 [24] ≈ 0.1 [4]

perfectly balanced memory distribution over stages. Some of
them use non-linear structures, which result in throughput
degradation, delay variation, and packet blocking during a
route update.

Furthermore, the “memory wall” [14] tends to impede the
performance improvement of a single pipeline architecture.
Thus it becomes necessary to employ multiple pipelines op-
erating in parallel to speed IP lookup. Each pipeline stores
part of the routing table so that both power and memory
efficiency can be achieved. Similar to the above analysis
of how the fattest stage affects the global performance of a
pipeline, the fattest pipeline is a performance bottleneck of
the multi-pipeline architecture as well. Hence an efficient
routing table partitioning and mapping scheme is needed
to balance the memory requirement over different pipelines.
On the other hand, traffic balancing is needed to achieve
multiplicative throughput improvement. Previous work on
parallel TCAM-based IP lookup engines uses either a learn-
ing algorithm to predict the future behavior of incoming
traffic based on its current distribution [24], or IP/prefix
caching to utilize the locality of Internet traffic [1]. The
former requires periodic reconstruction of the entire rout-
ing table, resulting in high overhead of route updates for
SRAM-based pipeline solutions. Hence we adopt caching in
our architecture.

Due to caching and queuing, packets within a flow1 may
go out of order. This adversely affects some network ap-
plications [20]. Hence, expensive reorder buffers and com-
plicated logic are usually needed. The proposed solution
preserves the intra-flow packet order without using large re-
order buffers.

We propose an SRAM-based multi-pipeline architecture
that consists of multiple bidirectional linear pipelines, for
high throughput IP lookup. This paper makes the following
contributions:

• To the best of our knowledge, this work is among the
first discussions of SRAM-based multi-pipeline solu-
tions for multi-terabit IP lookup.

• To balance the memory distribution among different
pipelines, a simple but efficient method is proposed
for trie partitioning, and an approximation algorithm
is used to map subtries to pipelines.

• Within each pipeline, a bidirectional fine-grained node-
to-stage mapping scheme is proposed to achieve a per-
fectly balanced memory allocation over pipeline stages.
The memory wastage due to over-provisioning [2] is al-
most zero.

1A flow is usually identified by the common fields of IP
headers, e.g. typically the five tuple of the source and des-
tination IP addresses, source and destination port numbers
and the protocol number [20]. This paper focuses on IP
lookup, and thus we define a sequence of packets with the
same destination IP address as a flow.

• IP caching is employed effectively to exploit the In-
ternet traffic locality. A high throughput of nearly
8 packets per clock cycle is obtained in the proposed
four-pipeline architecture.

• A lightweight scheduler and several small output delay
queues are developed to maintain the intra-flow packet
order. Neither a large reorder buffer nor complex re-
order logic is needed.

• Our simulation experiments using real-life data demon-
strate the SRAM-based pipelined architecture to be a
promising solution for next generation IP routers. The
proposed 4-pipeline architecture can store a full back-
bone routing table with over 200K unique prefixes us-
ing less than 2MB of memory. It can achieve a high
throughput of up to 18.75 billion packets per second
(GPPS), i.e. 6 Tbps for minimum size (40 bytes) pack-
ets.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the background and related work. Section 3
proposes a parallel architecture with multiple bidirectional
linear pipelines. The two key problems – memory balancing
and traffic balancing – are discussed in Sections 4 and 5,
respectively. In Section 6, the results of our experiments are
presented and discussed to evaluate the effectiveness of our
approaches. Section 7 concludes the paper.

2. BACKGROUND

2.1 Trie-based IP Lookup
IP lookup is the core function of the IP routers, retriev-

ing the next-hop information for each incoming IP packet
by matching the destination IP address of the packet with
a set of prefixes. The nature of IP lookup is longest prefix
matching (LPM). The most common data structure in algo-
rithmic solutions for performing LPM is some form of trie
[18]. A trie is a binary tree, where a prefix is represented
by a node. The value of the prefix corresponds to the path
from the root of the tree to the node representing the prefix.
The branching decisions are made based on the consecutive
bits in the prefix. A trie is called a uni-bit trie if only one
bit is used to make branching decision at a time. The prefix
set in Figure 1 (a) corresponds to the uni-bit trie in Figure 1
(b). For example, the prefix “010*” corresponds to the path
starting at the root and ending in node P3: first a left-turn
(0), then a right-turn (1), and finally a turn to the left (0).
Each trie node contains two fields: the represented prefix
and the pointer to the child nodes. By using the optimiza-
tion called leaf-pushing [22], each node needs only one field:
either the pointer to the next-hop address or the pointer to
the child nodes. Figure 1 (c) shows the leaf-pushed uni-bit
trie derived from Figure 1 (b).
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Figure 1: (a) Prefix set; (b) Uni-bit trie; (c) Leaf-
pushed uni-bit trie.

Given a leaf-pushed uni-bit trie, IP lookup is performed
by traversing the trie according to the bits in the IP ad-
dress. When a leaf is reached, the prefix associated with the
leaf is the longest matched prefix for that IP address. The
corresponding next-hop information of that prefix is then
retrieved. The time to look up a uni-bit trie is equal to the
prefix length. The use of multiple bits in one scan can in-
crease the search speed. Such a trie is called a multi-bit trie.
The number of bits scanned at a time is called the stride.
For simplicity, we consider only the leaf-pushed uni-bit trie
in this paper, though our ideas are applicable to other forms
of tries.

2.2 Memory-Balanced Pipelines
Pipelining can dramatically improve the throughput of

trie-based IP lookup. A straightforward way to pipeline a
trie is to assign each trie level to a dedicated stage, so that
a packet can be processed every clock cycle. However, as
discussed earlier, this simple pipeline scheme results in un-
balanced memory distribution, leading to low throughput
and inefficient memory allocation.

Basu et al. [3] and Kim et al. [9] both reduce the memory
imbalance by using variable strides to minimize the largest
trie level. However, even with their schemes, the size of
the memory of different stages can have a large variation.
As an improvement upon [9], Lu et al. [13] propose a tree-
packing heuristic to balance the memory further, but it does
not solve the fundamental problem of how to retrieve one
node’s descendants which are not allocated in the following
stage. Furthermore, a variable stride multi-bit trie is diffi-
cult for hardware implementation, especially if incremental
updating is needed [3].

Baboescu et al. [2] propose a Ring pipeline architecture
for tree-based search engines in IP routers. The pipeline
stages are configured in a circular, multi-point access pipeline
so that the search can be initiated at any stage. A tree is
split into many small subtrees of equal size. These subtrees
are then mapped to different stages to create a nearly bal-
anced pipeline. Some subtrees must wrap around if their
roots are mapped to the last several stages. Any incoming
IP packet must look up an index table to find its correspond-
ing subtree’s root, which is the starting point of that search.
Though all IP packets enter the pipeline from the first stage,
their lookup processes may be activated at different stages.
All the packets must traverse the pipeline twice to complete
the tree traversal. The throughput is thus 0.5 packets per
clock cycle.

Kumar et al. [11] extend the circular pipeline with a new
architecture called the Circular, Adaptive and Monotonic
Pipeline (CAMP). It uses several initial bits (i.e. initial
stride) as the hashing index to partition the trie. Using a
similar idea but different mapping algorithm than Ring [2],
CAMP also creates a nearly balanced pipeline. Unlike the
Ring pipeline, CAMP has multiple entry and exit stages.
Several queues are employed to manage the access conflicts
between packets from current and preceding stages. Since
different packets of an input stream may have different en-
try and exit stages, the ordering of the packet stream is lost
when passing through CAMP. Assuming the packets tra-
verse all the stages, when the packet arrival rate exceeds 0.8
packets per clock cycle, some packets may be discarded [11].
In other words, the worst-case throughput is 0.8 packets per
clock cycle. Also in CAMP, a queue adds extra delay for
each packet, which may result in out-of-order output as well
as delay variation.

Due to their non-linear structures, neither the Ring pipeline
nor CAMP in the worst case can maintain a throughput of
one packet per clock cycle. Also, neither of them supports
the non-blocking route update, since the ongoing update
may conflict with the preceding or following packets. Our
previous work [6] adopts an optimized linear pipeline archi-
tecture, named OLP, to achieve a throughput of one packet
per clock cycle, while supporting non-blocking route update.
By adding nops (no-operations) in the pipeline, OLP offers
more freedom in mapping trie nodes to pipeline stages. The
trie is partitioned, and all subtries are converted into queues
and mapped onto the pipeline from the first stage. However,
the first several stages in OLP may not be balanced, since
the top levels of a trie have few nodes.

Overall, none of the existing memory-based pipelined so-
lutions can achieve either a perfectly balanced memory dis-
tribution across pipeline stages, or a scalable throughput of
more than one packet per clock cycle.

2.3 Partition-based Parallel Engines
Little work has been done on parallel IP lookup engines

based on SRAM-based pipelines. Most published parallel
IP lookup engines are TCAM-based [23, 24]. They partition
the full routing table into several blocks, and make the mul-
tiple search processes parallel on these blocks. Both power
efficiency and throughput improvement can be obtained by
such partitioning and parallelization. Some ideas of TCAM-
based solutions can be borrowed to develop our solution, but
they must be adapted for SRAM-based pipelined architec-
tures.



Two methods are widely used in TCAM-based solutions
to partition a routing table [23]: bit-selection and trie-based
approaches. In the former, selected bits are used to index
different TCAM blocks directly. However, prefix and mem-
ory distribution imbalance among the TCAM blocks may be
quite high, resulting in poor worst-case performance. The
latter scheme splits the trie by carving subtries out of the
full trie. This can have a much better worst-case bound.
Since those subtries may be on different levels of the trie,
different numbers of bits are used to index different subtries.
Such a scheme is difficult for SRAM-based solutions, where
the index tables are addressable memory with a constant
number of address bits.

Traffic balancing is another difficult problem for paral-
lel IP lookup engines. Many solutions based on TCAMs
have been proposed, including learning-based block rear-
rangement [24] and IP/prefix caching [1]. The former re-
quires periodic reconstruction of the entire routing table,
which is impractical for SRAM-based pipeline solutions due
to the high overhead of updating. On the other hand, be-
cause of Internet traffic locality, IP/prefix caching is effective
for speeding up the lookup throughput [7]. However, due
to caching and queuing, packets within a flow may go out
of order. This adversely affects some network applications
[20]. As a result, large reorder buffers and logic are usually
needed, which are expensive and complicated.

3. ARCHITECTURE OVERVIEW
First, we give the following definitions and notations.

Definition 1. The input width is the maximum number
of input packets per clock cycle, denoted W .

Definition 2. The pipeline scale is the number of pip-
elines, denoted P . Usually W = 2P .

Definition 3. The pipeline depth is the number of pipeline
stages of each pipeline, denoted H.

Definition 4. The cache size is the maximum number
of IP addresses allowed to be cached, denoted C.

Definition 5. The queue size is the maximum number
of packets allowed to be stored in a queue, denoted Q.

The proposed architecture consists of P of SRAM-based
bidirectional linear pipelines with the same depth. Figure 2
shows an example of the architecture with P = 4, W = 8.

Each pipeline has two entrances and stores part of the full
routing table. To partition the routing table, we construct
the prefixes of the routing table as a leaf-pushed uni-bit trie
and partition the trie into many disjoint subtries. Those sub-
tries are then mapped onto different pipelines while keeping
the memory requirement over different pipelines balanced.
Within each pipeline, a bidirectional fine-grained node-to-
stage mapping is employed to balance the trie node distri-
bution across the pipeline stages. The details of trie parti-
tioning, subtrie-to-pipeline and node-to-stage mapping are
discussed in Section 4.

The architecture can be divided into two parts: Front
End and Back End. The Front End receives packets and
dispatches the packets to different pipelines. The Back End
processes the packets and outputs the retrieved next-hop
information.

3.1 Front End
At most W packets can be inputted in one clock cycle.

The destination IP address of each packet is used to access
the cache and the destination index table (DIT) simulta-
neously. There are W copies of caches and DITs. The
cache stores the most recently searched IP addresses and
their next-hop information. The DIT stores the relationship
between the subtries and the pipeline entrances. As we will
see later, both the subtrie-to-pipeline and the node-to-stage
mapping schemes determine the pipeline entrance for each
subtrie.

After a packet obtains the outputs from the cache and
the DIT, the scheduler determines which pipeline entrance
the packet is routed to. If the packet gets a cache miss, it
is directed to the pipeline entrance for the subtrie to which
this packet belongs. Since it is possible for multiple packets
to be directed to the same pipeline entrance, each entrance
needs a multi-port queue to tolerate the access conflict. If
the packet gets a cache hit, it is directed to the queue with
fewest packets. Then the packet goes through the queue and
the pipeline without any operation, since it already retrieves
the next-hop information from the cache.

3.2 Back End
Each pipeline is configured as a dual-entrance dual-exit

bidirectional linear pipeline. After a packet enters the pipeline,
with the bits of its destination IP address being scanned, the
packet traverses the corresponding subtrie by going through
all the stages of the pipeline to which the subtrie is mapped,
in the direction determined by how the subtrie is mapped.
At each pipeline stage, the memory has dual Read/Write
ports so that packets from both directions can access the
memory simultaneously.

When the packet exits the pipeline, it may be delayed to
be output so that the intra-flow packet order is preserved.
The number of clock cycles to be delayed for each packet
is determined by the scheduler when the packet is at the
Front End. To implement the variable delay for each packet,
we develop several output delay queues, which are built as
single-entrance multi-exit pipelines. Each exit of a pipeline
has a dedicated output delay queue. If the architecture has
W pipeline entrances, it has W pipeline exits and W out-
put delay queues. The details of the intra-flow packet order
preservation are discussed in Section 5.

3.3 Route Updates
We update the memory in the pipeline by inserting write

bubbles [3]. The new content of the memory is computed
offline. When an update is initiated, a write bubble is in-
serted into the pipeline. The pipeline entrance of a write
bubble is the pipeline entrance for the subtrie that the write
bubble is going to update. Each write bubble is assigned an
ID. There is one write bubble table in each stage. The ta-
ble stores the update information associated with the write
bubble ID. When a write bubble arrives at the stage prior
to the stage to be updated, the write bubble uses its ID to
look up the write bubble table. Then the bubble retrieves
(1) the memory address to be updated in the next stage, (2)
the new content for that memory location, and (3) a write
enable bit. If the write enable bit is set, the write bubble
will use the new content to update the memory location in
the next stage. For one route update, we may need to insert
multiple write bubbles consecutively.
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Figure 2: Block diagram of the architecture. (P = 4, W = 8)

Since the subtries mapped onto the two directions of each
pipeline are disjoint, a write bubble inserted from one direc-
tion will not contaminate the memory content for the packet
from the other direction. Also, since the pipeline is linear, all
packets preceding or following the write bubble can perform
their IP lookup while the write bubble performs an update.

4. MEMORY BALANCING
This section studies the problem of memory balancing over

the pipelines, as well as across the stages of each pipeline.
Three issues are to be addressed.

1. Partitioning the entire routing trie in a simple but ef-
ficient way

2. Mapping subtries to different pipelines so that each
pipeline has the same number of trie nodes

3. Mapping trie nodes to pipeline stages so that the mem-
ory requirement across the stages is balanced

First, we define the following terms.

Definition 6. The size of a trie is the number of trie
nodes in the trie.

Definition 7. The depth of a trie node is the directed
distance from the trie node to the trie root. The depth of a
trie refers to the maximum depth of all trie leaves.

Definition 8. The height of a trie node is the maxi-
mum directed distance from the trie node to a leaf node. The
height of a trie refers to the height of the trie root. Note that
the depth of a trie is equal to its height.

Definition 9. Two subtries are disjoint if they share no
prefix.

4.1 Trie Partitioning
To partition the trie, we adopt a scheme called prefix ex-

pansion [22], illustrated in Figure 3. Several initial bits are
used as the index to partition the trie into many disjoint
subtries. The number of initial bits to be used is called the
initial stride, denoted I . A larger I can result in more small
subtries, which can help balance the memory distribution
when mapping subtries to pipelines. However, a large I can
result in prefix duplication, where a prefix may be copied to
multiple subtries. For example, if we use I = 4 to expand
the prefixes in Figure 1 (a), the prefix P3 whose length is 3
will be copied to two subtries. One subtrie with the initial
bits of “0100” has the prefixes P3 and P4, and the other with
“0101”has the prefixes P3 and P5. Prefix duplication results
in memory inefficiency and may increase the update cost. If
two subtries containing a same prefix are mapped onto two
pipelines, a route update related to that prefix must update
both pipelines.
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Figure 3: Mapping the trie shown in Figure 1 onto two 4-stage pipelines.

We study the prefix length distribution based on four rep-
resentative routing tables collected from [17]: JPIX, MAE-
WEST, MIX and PAIX. As shown in Table 2, few prefixes
are shorter than 16. Hence, using an I of less than 16 should
not result in much duplication of prefixes. In the following
sections, we pick I = 12 as default.

4.2 Subtrie-to-Pipeline Mapping
Our partitioning scheme may result in many subtries of

various sizes. For example, using I = 12 to partition the
trie corresponding to the routing table PAIX, the largest
subtrie has 5319 nodes, while the smallest subtrie has only
one node.

4.2.1 Problem Formulation
The problem now is to map the subtries to the pipelines

so that all pipelines have an equal number of trie nodes:

min max
i=1,2,··· ,P

size(Si) (1)

with the constraint

⋃

i=1,2,··· ,P

Si =
⋃

j=1,2,··· ,K

Tj (2)

where Si denotes the set of subtries contained in the ith
pipeline, i = 1, 2, · · · , P ; K the number of subtries, Ti the
ith subtrie, i = 1, 2, · · · , K, and size(.) the number of trie
nodes of a set of subtries.

4.2.2 Mapping Algorithm
The above optimization problem is NP-hard. This can be

shown by a reduction from the partitioning problem [10]. We

propose a polynomial-time approximation algorithm (Algo-
rithm 1). The complexity of this algorithm is O(KP ), where
K denotes the number of subtries and P the number of pi-
pelines. According to [10], in the worst-case, the resulting
largest pipeline may have 1.5 times the number of nodes as
the optimal mapping. Figure 3 illustrates an example of
mapping 3 subtries to 2 pipelines.

Algorithm 1 Subtrie-to-pipeline mapping

Input: K subtries: Ti, i = 1, 2, · · · , K.
Input: P empty pipelines.
Output: P pipelines, each of which contains a set of sub-

tries Si, i = 1, 2, · · · , P .
1: Set Si = φ for all pipelines, i = 1, 2, · · · , P .
2: Sort {Ti} in the decreasing order of size(Ti), i =

1, 2, · · · , K.
3: Assume that size(T1) ≥ size(T2) ≥ · · · ≥ size(TK).
4: for i = 1 to K do
5: Find Sm so that size(Sm) = minj=1,2,··· ,P Sj .
6: Assign Ti to the m th pipeline: Sm ← Sm ∪ Ti.
7: end for

4.2.3 Experimental Results
To verify the effectiveness of the above algorithm, we used

the algorithm on the four routing tables given in Table 2. In
these experiments, we set P = 4. The resulting size of each
pipeline is shown in Figure 4. The size of each pipeline was
normalized by:

size(Si)normalized =
size(Si)

minP
j=1 size(Sj)

, i = 1, 2, · · · , P. (3)



Table 2: Representative Routing Tables
Routing table Location Date # of prefixes # of prefixes with length < 16

JPIX (rrc06) Otemachi, Japan 20071130 239332 1926 (0.80%)
MAE-WEST (rrc08) San Jose, USA 20040901 83556 495 (0.59%)

MIX (rrc10) Milan, Italy 20071130 236991 1939 (0.82%)
PAIX (rrc14) Palo Alto, USA 20071130 243731 1949 (0.80%)

where Si denotes the set of subtries contained by the ith
pipeline, i = 1, 2, · · · , P .

According to Figure 4, our algorithm resulted in balanced
memory distribution among 4 pipelines for all four routing
tables.
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Figure 4: Normalized node distribution over 4 pip-
elines.

4.3 Node-to-Stage Mapping
We now have a set of subtries for each pipeline. Within

each pipeline, the trie nodes should be mapped to the stages
while keeping the memory requirement across the stages bal-
anced. Also, each pipeline should be linear in either of the
two directions.

4.3.1 Problem Formulation
Consider K subtries mapped to a pipeline. The problem

is formulated as:

min max
i=1,2,··· ,H

Mi (4)

with the constraint (5) and Constraint 1

H∑

i=1

Mi =
K∑

j=1

size(Tj) (5)

Constraint 1 : If node A is an ancestor of node B in a trie,
then A must be mapped to a stage preceding the stage to
which B is mapped.

In the above formulation, Mi denotes the number of nodes
mapped to the ith stage, i = 1, 2, · · · , H ; Ti the ith subtrie,
i = 1, 2, · · · , K; and size(.) the size of a subtrie, i.e. the
number of trie nodes in the subtrie. Note that, due to Con-
straint 1, the pipeline depth must be larger than the height

of any subtrie, to guarantee all subtries are mapped to the
pipeline.

4.3.2 Motivation of Bidirectional Fine-Grained Map-
ping

State-of-the-art pipelined solutions [2, 11, 6] cannot achieve
perfectly balanced memory distribution, due to several con-
straints placed during mapping: (1) They require trie nodes
on the same level be mapped onto the same stage. (2) The
mapping scheme is uni-directional: the subtries partitioned
from the original trie must be mapped in the same direction
(either from the root or from the leaves). Actually, both
constraints are unnecessary. The only constraint we must
obey during mapping is Constraint 1.

We propose a bidirectional fine-grained mapping scheme,
as shown in Figure 3. The main ideas are to allow (1) two
subtries to be mapped onto different directions, and (2) two
trie nodes on the same trie level to be mapped onto different
stages.

4.3.3 Subtrie Inversion
In a trie, there are few nodes at the top levels while there

are a lot of nodes at the leaf level. Hence, we can invert
some subtries so that their leaf nodes are mapped onto the
first several stages. We propose several heuristics to select
the subtries to be inverted:

1. Largest leaf : The subtrie with the most number of
leaves is preferred. This is straightforward since we
need enough nodes to be mapped onto the first several
stages:

2. Least height : The subtrie of shortest height is pre-
ferred. Due to Constraint 1, a subtrie with a larger
height has less flexibility to be mapped onto pipeline
stages.

3. Largest leaf per height : This is a combination of the
previous two heuristics, by dividing the number of
leaves of a subtrie by its height.

4. Least average depth per leaf : Average depth per leaf
is the ratio of the sum of the depth of all the leaves
to the number of leaves. This heuristic prefers a more
balanced subtrie. A balanced subtrie has many nodes
not only at the leaf level but also at the lower levels,
which can help balance not only the first stage but also
the first several stages.

Algorithm 2 finds the subtries to be inverted, where IFR
denotes the inversion factor. A larger inversion factor re-
sults in more subtries to be inverted. When the inversion
factor is 0, no subtrie is inverted. When the inversion factor
is close to the pipeline depth, all subtries are inverted. The
complexity of this algorithm is O(K) where K denotes the
total number of subtries.



Algorithm 2 Selecting the subtrie to be inverted

Input: K subtries.
Output: V subtries to be inverted.
1: N = total # of trie nodes of all subtries, H = # of

pipeline stages, V = 0.
2: while V < K < IFR× �N/H� do
3: Based on the chosen heuristic, select one subtrie from

those not inverted.
4: V = V + 1, K = K − 1 + # of leaves of the selected

subtrie.
5: end while

4.3.4 Mapping Algorithm
Now we have two sets of subtries. Those subtries which

are mapped from roots are called the forward subtries, while
the others are called the reverse subtries. We use a bidirec-
tional fine-grained mapping algorithm (Algorithm 3). The
nodes are popped out of the ReadyList in the decreasing
order of their priority. The priority of a trie node is defined
as its height if the node is in a forward subtrie, and its depth
if in a reverse subtrie. The node whose priority is equal to
the number of the remaining stages is regarded as a criti-
cal node. For the forward subtries, a node is pushed into
the NextReadyList immediately after its parent is popped.
For the reverse subtries, a node will not be pushed into the
NextReadyList until all its children are popped. The com-
plexity of this mapping algorithm is O(HN) where H de-
notes the pipeline depth and N the total number of nodes.

4.3.5 Implementation Issues
We propose a method to enable two nodes on the same

level of a subtrie to be mapped to different stages. Each node
stored in the local memory of a pipeline stage has two fields.
One is the distance to the pipeline stage where its child node
is stored. The other is the memory address of the child node
in that stage. Before a packet moves onto the next stage, its
distance value is checked. If the value is zero, the memory
address of its child node is used to index the memory in
the next stage to retrieve its child node content. Otherwise,
the packet will do nothing in that stage but decrement its
distance value by one.

The effectiveness of the bidirectional mapping scheme is
evaluated in Section 6.

5. TRAFFIC BALANCING AND INTRA-FLOW
PACKET ORDER PRESERVING

This section studies traffic balancing among multiple pip-
elines while preserving the intra-flow packet order.

5.1 Traffic Balancing by Caching
Since the routing table is partitioned, it is possible for

multiple IP packets mapped onto a same subtrie and simul-
taneously dispatched to the same entrance of a pipeline. To
handle such an access conflict, we need a multi-port queue
for each pipeline entrance. However, due to the TCP mech-
anism and application characteristics, Internet traffic con-
tains a great amount of locality, resulting in bursts [12].
The queues will easily overflow in the case of bursty traffic.

On the other hand, caching has been proven to be an ef-
ficient mechanism to exploit Internet traffic locality to bal-
ance the load among parallel engines [1]. In our architecture

Algorithm 3 Bidirectional fine-grained mapping

Input: K forward subtries.
Input: V reverse subtries.
Output: H stages with mapped nodes.
1: Create and initialize two lists: ReadyList = φ and

NextReadyList = φ.
2: Rn = # of remaining nodes, Rh = # of remaining stages

= H .
3: Push the roots of the forward subtries and the leaves of

the reverse subtries into ReadyList.
4: for i = 1 to H do
5: Mi = 0, Critical = FALSE.
6: Sort the nodes in ReadyList in the decreasing order

of the node priority.
7: while Critical = TRUE or (Mi < �Rn/Rh� and

Readylist 	= φ) do
8: Pop node from ReadyList and map into Stage i.
9: if The node is in forward subtries then

10: The popped node’s children are pushed into
NextReadyList.

11: else if All children of the popped node’s parent
have been mapped then

12: The popped node’s parent is pushed into
NextReadyList.

13: end if
14: Critical = FALSE.
15: if There exists a node Nc ∈ ReadyList and the

priority of Nc >= Rh − 1 then
16: Critical = TRUE.
17: end if
18: end while
19: Rn = Rn −Mi, Rh = Rh − 1.
20: Merge the NextReadyList to the ReadyList.
21: end for

shown in Figure 2, some small caches are added to cache the
most recently searched IP addresses. When a new packet ar-
rives, if it has a cache hit, it will skip lookup and be directed
to the pipeline entrance whose queue has the fewest packets.
If the packet has a cache miss, it must go to the appropri-
ate pipeline entrance to traverse the corresponding subtrie.
The cache can be organized in any associativity. We use full
associativity as the default. The cache update is triggered,
either when there is a route update that is related to some
cached entry, or after a packet that previously had a cache
miss retrieves its search result from the pipeline. Any re-
placement algorithm can be used to update the cache. The
Least Recently Used (LRU) algorithm is used as the default.

5.2 Preserving Intra-Flow Packet Order
The packet within a flow may go out of order, due to

caching and queuing. For instance, consider packets A, B,
C belonging to the same flow and assume they arrive in that
order. A is the first packet and it has a cache miss. Then it
goes to the pipeline and completes lookup. Before the cache
is updated, B arrives and has a cache miss. B is directed
to the pipeline entrance whose queue may be almost full.
Right after B enters the queue, the caches are updated and
C arrives with a cache hit. C is dispatched to a queue with
the fewest packets. At this time, if B has already entered the
pipeline, C cannot catch up with B, since C must go through
the pipeline, though it won’t perform any lookup operation.



However, if B is still waiting in a long queue while C enters
an almost empty queue, C will be output before B.

The schedulers can easily detect such intra-flow out-of-
order packets while dispatching packets. The schedulers
track the status of each queue, i.e. the number of packets
waiting in the queue. When a packet has a cache hit, the
scheduler dispatches it to the queue with the fewest packets.
We call this queue the lightest loaded queue. Assume there
are Lmin packets in the lightest loaded queue. The sched-
uler also checks the status of the queue which corresponds
to the subtrie onto which the packet is mapped. The map-
ping relationship is stored in the DIT. Assume there are Lc

packets in this queue. The scheduler attaches a delay value
of Lc − Lmin to the packet. As shown in Figure 2, a packet
goes to an output delay queue when it exits the pipeline.
Each output delay queue is built as a single-entrance multi-
exit pipeline. If the delay value of the packet is 0, the packet
is output immediately. Otherwise, the packet goes through
the output delay queue and decrements its delay value by
one at each stage, until its delay value becomes zero. Note
that it is possible to output multiple packets of a flow at the
same time, in case these packets are input into the archi-
tecture simultaneously. To preserve the order among these
packets, they are tagged with a value of 1 ∼W at the Front
End and output in the tag order.

We call the queues for each pipeline entrance the input
queues and the output delay queues the output queues. We
can see from the above discussion that the size of the output
queue should be equal to that of the input queue. We will
also see later that the queue size needed is quite small.

6. PERFORMANCE EVALUATION
This section evaluates the performance of the architecture.

First, we examine the memory balancing across all pipeline
stages by using the proposed schemes. Then, we measure
the throughput using real-life traffic traces. All experiments
are based on simulation.

6.1 Memory Balancing across Pipeline Stages
We conducted experiments on the four routing tables in

Table 2 to evaluate the effectiveness of the bidirectional fine-
grained mapping scheme. In these experiments, the initial
stride used for partitioning the trie was I = 12. Other pa-
rameters were set as P = 4, H = 25.

When the inversion factor is 0, no subtrie is inverted and
hence the first several stages cannot be balanced. When the
inversion factor is 25, i.e. the pipeline depth, all subtries
are inverted and the last several stages cannot be balanced.
Hence we need to select an appropriate value for the in-
version factor. We conducted the experiments changing the
inversion factor from 0 to 25. We found that when the inver-
sion factor was in the range of 4 ∼ 8, the node distribution
across all pipeline stages was perfectly balanced, regardless
of which inversion heuristic was used. Figure 5 shows the
results of mapping the routing tables onto four 25-stage pi-
pelines, with the inversion factor of 4 and the Least average
depth per leaf inversion heuristic.

We also examined the impact of the proposed four inver-
sion heuristics, when the inversion factor was set to 1. We
found that the least average depth per leaf heuristic had the
best performance, showing that when we have a choice, a
balanced subtrie should be inverted. Due to space limita-
tion, we do not present detailed results here.
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Figure 5: Node distribution over four 25-stage pipe-
lines. (Inversion factor = 4, Least average depth per
leaf heuristic)

6.2 Throughput Scaling
We used real-life Internet traffic traces to evaluate the

throughput performance of the architecture. Two anonymized
real-life traces were collected from [15]. Their information
is listed in Table 3. Due to the unavailability of public IP
traces associated with their corresponding routing tables,
we generated the routing tables by extracting the unique
destination IP addresses from the traces.

In these experiments, the default setting of the architec-
ture parameters was W = 8, P = 4, H = 25, Q = 16, C =
160. The performance metric is the throughput in terms of
the number of packets processed per clock cycle (PPC). Note
that in a W -width architecture, the throughput is ≤W .

We increased the number of pipelines while keeping the
input width W = 2P , and observed the throughput scala-
bility. As shown in Figure 6, with caching, the throughput
scaled well with the number of pipelines. When there were
4 pipelines, the throughput could be as high as 7.5 PPC. On
the other hand, the overhead was low: only 1% of routing
entries were cached, and the queue size was quite small as
well. We did more experiments by increasing the queue size
but did not obtain much improvement. Hence, small queues
are sufficient in our architecture. In all the above experi-
ments, we also found that the packets within any flow were
output in the same input order.
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Figure 6: Throughput vs. # of Pipelines. (H =
25, Q = 16, C = 160.)



Table 3: IP header traces
Trace Date # of packets # of unique IP entries

APTH: AMP-1110523221-1 20050311 769100 17628
IPLS: I2A-1091235138-1 20040731 1821364 15791

6.3 Overall Performance
Based on the previous experiments, we estimate the over-

all performance of a 8-width 4-pipeline 25-stage architecture.
As Figure 5 shows, for the backbone routing table MIX with
236991 prefixes, each stage has no more than 7939 nodes. A
13-bit address is enough to index a node in the local memory
of a stage. Since the pipeline depth is 25, we need an extra
5 bits to specify the distance. Thus, each node stored in the
local memory needs 18 bits. The total memory needed is
18 × 213 × 25 × 4 ≈ 14.75 Mb ≈ 1.8 MB, where each stage
needs 18 KB of memory. We use CACTI 4.2[4] to estimate
the memory access time and the power consumption. An 18-
KB dual-port SRAM using 45 nm technology needs 0.4 ns
to access, and dissipates 0.008 W of power. The maximum
clock rate of the above architecture in ASIC implementation
can be 2.5 GHz. Considering the throughput of 7.5 PPC as
shown in Section 6.2, the overall throughput can be as high
as 7.5×2.5 = 18.75 G packets per second, i.e 6.0 Tbps for the
minimum packet size of 40 bytes. Such a throughput is 35
times that of the state-of-the-art TCAM-based IP lookup
engines [24]. The overall power consumption to complete
one IP lookup is 0.008 × 25 = 0.2 W, a 10-fold reduction of
that of the “cool” TCAM solution [23].

7. CONCLUSION
This paper proposed an SRAM-based multi-pipeline ar-

chitecture for multi-terabit trie-based IP lookup. The ar-
chitecture consists of multiple bidirectional linear pipelines,
each of which stores part of a routing table. The architecture
provides more flexibility for mapping a routing trie to the
pipelines, so that the memory distribution over different pi-
pelines as well as across different stages in each pipeline are
both balanced. Furthermore, IP caching is effectively inte-
grated to scale the throughput improvement. Using 1.8 MB
of memory to store a core routing table with nearly 237K
prefixes, the proposed 4-pipeline architecture can achieve a
high throughput of up to 6 Tbps i.e. 37.5× the OC-3072
rate. Our future work includes prototyping the proposed
architecture on FPGAs and evaluating its performance un-
der real-life scenarios.

8. REFERENCES
[1] M. J. Akhbarizadeh, M. Nourani, R. Panigrahy, and

S. Sharma. A TCAM-based parallel architecture for
high-speed packet forwarding. IEEE Trans. Comput.,
56(1):58–72, 2007.

[2] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A
tree based router search engine architecture with single
port memories. In Proc. ISCA, pages 123–133, 2005.

[3] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. In Proc. INFOCOM,
pages 64–74, 2003.

[4] CACTI 4.2. http://quid.hpl.hp.com:9081/cacti/.

[5] Cypress Sync SRAMs. http://www.cypress.com.

[6] W. Jiang and V. K. Prasanna. A memory-balanced
linear pipeline architecture for trie-based IP lookup. In
Proc. Hot Interconnects (HotI ’07), pages 83–90, 2007.

[7] W. Jiang, Q. Wang, and V. K. Prasanna. Beyond
TCAMs: An SRAM-based parallel multi-pipeline
architecture for terabit IP lookup. In Proc.
INFOCOM, 2008.

[8] Juniper Networks T1600 Core Router.
http://www.juniper.net.

[9] K. S. Kim and S. Sahni. Efficient construction of
pipelined multibit-trie router-tables. IEEE Trans.
Comput., 56(1):32–43, 2007.

[10] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., 2005.

[11] S. Kumar, M. Becchi, P. Crowley, and J. Turner.
CAMP: fast and efficient IP lookup architecture. In
Proc. ANCS, pages 51–60, 2006.

[12] S. Kumar, J. Maschmeyer, and P. Crowley. Exploiting
locality to ameliorate packet queue contention and
serialization. In Proc. Computing Frontiers (CF ’06),
pages 279–290, 2006.

[13] W. Lu and S. Sahni. Packet forwarding using
pipelined multibit tries. In Proc. ISCC, 2006.

[14] S. A. McKee. Reflections on the memory wall. In Proc.
Computing Frontiers (CF ’04), page 162, 2004.

[15] NLANR network traffic packet header traces.
http://pma.nlanr.net/traces/.

[16] Renesas CAM ASSP Series. http://www.renesas.com.

[17] RIS Raw Data. http://data.ris.ripe.net.

[18] M. A. Ruiz-Sanchez, E. W. Biersack, and
W. Dabbous. Survey and taxonomy of IP address
lookup algorithms. IEEE Network, 15(2):8–23, 2001.

[19] SAMSUNG High Speed SRAMs.
http://www.samsung.com.

[20] L. Shi, Y. Zhang, J. Yu, B. Xu, B. Liu, and J. Li. On
the extreme parallelism inside next-generation
network processors. In Proc. INFOCOM, pages
1379–1387, 2007.

[21] A. Singhal and R. Jain. Terabit switching: a survey of
techniques and current products. Comput.
Communications, 25:547–556, 2002.

[22] V. Srinivasan and G. Varghese. Fast address lookups
using controlled prefix expansion. ACM Trans.
Comput. Syst., 17:1–40, 1999.

[23] F. Zane, G. J. Narlikar, and A. Basu. CoolCAMs:
Power-efficient TCAMs for forwarding engines. In
Proc. INFOCOM, pages 42–52, 2003.

[24] K. Zheng, C. Hu, H. Lu, and B. Liu. A TCAM-based
distributed parallel IP lookup scheme and
performance analysis. IEEE/ACM Trans. Netw.,
14(4):863–875, 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


